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Abstract.

This paper describes a neural network algorithm for the estimation of liquid water cloud optical properties from the Po-

larization and Directionality of Earth’s Reflectances-3 (POLDER-3) instrument, on board the Polarization & Anisotropy of

Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite. The algorithm has been

trained on synthetic multi-angle, multi-wavelength measurements of reflectance and polarization, and has been applied to the5

processing of one year of POLDER-3 data. Comparisons of the retrieved cloud properties with Moderate resolution Imag-

ing Spectroradiometer (MODIS) products show negative biases around −2 in retrieved cloud optical thicknesses (COTs) and

between −1 and −2 µm in retrieved cloud effective radii. Comparisons with existing POLDER-3 datasets suggest that the

proposed scheme may have enhanced capabilities for cloud effective radius retrieval at least over land. An additional feature

of the presented algorithm is that it provides COT and effective radius retrievals at the native POLDER-3 Level 1B pixel level.10

1 Introduction

Clouds are undoubtedly one of the most important components of the Earth system. Cloud formation and transport processes are

among the most imposing mechanisms through which water is daily redistributed across our planet, with obvious implications

for meteorology and climate. In this regard, it is worthwhile to mention that every day approximately between 55% and 75% of

the Earth surface is covered by clouds (Stubenrauch et al., 2013). In addition to their role in the water cycle, clouds also impact15

the Earth climate by affecting the planetary energy balance in multiple ways. They exert a cooling effect by reflecting incoming

Solar radiation at visible wavelengths, and a warming effect by absorbing and re-emitting infrared radiation (Rossow and Lacis,

1990; Rossow and Zhang, 1995). The impact of clouds on climate is further complicated by the existence of a number of

feedback mechanisms involving clouds and temperature (Stephens, 2004) and by cloud-aerosol interactions (Rosenfeld et al.,

2014; Fan et al., 2016). According to the latest reports of the Intergovernmental Panel on Climate Change (IPCC), the net effect20

of clouds on our climate is still highly uncertain (Boucher et al., 2013).

In order to reduce our uncertainty about the effect of clouds on the climate system, it is crucial to establish a global obser-

vational basis for a number of cloud properties. These include cloud cover, thermodynamical phase, optical thickness, droplet
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concentration, height and size. The estimation of cloud properties by means of satellite remote sensing has received signifi-

cant attention in the last three decades. The most widespread estimation methods infer cloud properties from measurements

of reflected sunlight in the visible, near and shortwave infrared spectral domain, or from measurements of emitted radiation

in the longwave infrared domain. Reflectance measurements in (VIS) and near infrared (NIR) channels with no substantial

water absorption are sensitive to the cloud optical thickness (COT), whereas reflectance measurements in shortwave infrared5

(SWIR) channels with significant absorption by liquid water or ice are sensitive to the cloud effective radius (Nakajima and

King, 1990). Brightness temperature measurements in the thermal infrared (TIR) allow the estimation of cloud top pressure

and temperature (Menzel et al., 2008). Furthermore, measurements in SWIR and TIR channels at which liquid water and ice

exhibit different absorption behaviour are suitable for the estimation of the cloud thermodynamical phase (Baum et al., 2000).

The measurement principles mentioned so far form the basis for the estimation of cloud properties from multispectral instru-10

ments such as the Moderate Resolution Imaging Spectroradiometer (MODIS), as described in King et al. (2003) and Platnick

et al. (2003, 2017). Complementary information on cloud liquid and ice water path can be obtained from passive microwave

measurements (Vivekanandan et al., 1991; Liu and Curry, 1993).

An additional source of information for the retrieval of cloud properties from space is represented by multi-angle polarimetric

observations, such as those provided by the Polarization and Directionality of Earth’s Reflectances (POLDER) instruments15

(Deschamps et al., 1994), which will be followed by the by the Multi-viewing Multi-channel Multi-polarization Imaging

(3MI) instrument (Fougnie et al., 2018) in 2021. While the COT retrieval in POLDER Level 2 products follows a principle

similar to that used in MODIS retrievals (Buriez et al., 1997), the retrieval of cloud effective radius is based on the analysis of

the polarized reflectance at scattering angles ranging approximately between 140◦ and 165◦. More specifically, in presence of

a cloud, the polarized reflectance has a maximum at a scattering angle close to 142◦ (the primary cloudbow) and, if the droplet20

size distribution is narrow enough (effective variance smaller than ∼ 0.05), a number of secondary maxima in the angular

range between 145◦ and 165◦, the positions of which depend on the cloud effective radius (Bréon and Goloub, 1998; Bréon

and Doutriaux-Boucher, 2005; Alexandrov et al., 2012a). The amplitude of the angular oscillations of the polarized reflectance,

instead, depends on the effective variance, with smaller effective variances leading to wider oscillations (Shang et al., 2015).

Cloud effective radius retrievals from multi-angle polarimetry are often based on tabulated synthetic measurements, and25

require an assumption on the cloud droplet size distribution, which can bias the retrievals toward certain cloud types (Bréon

and Doutriaux-Boucher, 2005). When polarization measurements are available at a large number of viewing angles, as is the

case with the airborne Research Scanning Polarimeter (RSP) instrument (Cairns et al., 1999), techniques exist for estimating

the complete cloud droplet size distribution relying on fewer and less stringent assumptions (Alexandrov et al., 2012b). In

this paper we investigate an alternative method for the estimation of COT and cloud effective radius from satellite multi-angle30

polarimetric measurements, based on artificial neural networks. Neural networks (NNs) have been widely applied to cloud

remote sensing problems, including cloud detection and classification (Miller and Emery, 1997; Aires et al., 2011; Taravat

et al., 2015), retrieval of cloud properties based on traditional, plane-parallel radiative transfer assumptions (Cerdeña et al.,

2007; Loyola et al., 2007, 2010, 2018; Håkansson et al., 2018), and three-dimensional retrievals (Cornet et al., 2004, 2005;

Evans et al., 2008; Okamura et al., 2017). Among the attractive features of NN-based retrieval schemes are their high speed and35
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their modest memory demand (at least after the training phase is completed), which make them suitable for processing large

amounts of measurements in very short time. Furthermore, NN retrievals have sometimes been shown to be more accurate than

lookup-table (LUT) retrievals with reasonably sized LUTs (Di Noia et al., 2015; Whitburn et al., 2016; Di Noia et al., 2017).

While most of the NN-based cloud retrieval schemes have been developed for single-viewing, multispectral reflectance

measurements, the application of neural networks to multi-angle observations has been limited so far, wirth few examples5

in the closely related task of aerosol retrieval (Han et al., 2006; Di Noia et al., 2015, 2017), one in the context of three-

dimensional cloud retrievals (Evans et al., 2008) and a recently developed method for cloud retrievals from the RSP multi-angle

polarimeter (Segal-Rozenhaimer et al., 2018). The main challenge posed by multi-angle measurements in the design of neural

network retrieval techniques lies in the variability of the viewing angles at which the measurements are performed. In fact,

in such a situation the values taken by a measurement vector are not only dependent on the atmospheric state to be retrieved,10

but are also strongly dependent on the observation geometry, which makes the inverse model to be learned by the neural

network particularly complex. For instance, a vector of multilayer polarized radiances over a cloudy scene characterized by a

certain combination of cloud parameters (COT, effective radius, effective variance, etc.) can take dramatically different values

depending on whether the sampled angular interval contains the rainbow scattering angle range (approximately 135◦− 165◦).

This problem is especially noticeable for large-swath instruments, in which the pixel-to-pixel variability of the available set15

of observation geometries is largest. In order to cope with this problem, it is important to use the variables that describe the

observation geometry as inputs for the neural network, and to generate a training set that reflects the real statistical distribution

and correlation structure of such variables. Given the complexity of the learning problem, in order to enhance the accuracy

of our neural network retrievals, in this work we have adopted an approach based on neural network ensembles (Hansen and

Salamon, 1990), which simply consists of training multiple neural networks and averaging their outputs. This approach is20

known to reduce random retrieval errors.

In addition to being based on neural networks, the retrieval scheme presented in this paper differs from the existing cloud

retrieval techniques for POLDER-3 in the used input quantities and in the spatial resolution of the output product. While the

operational COT product does not use polarization information, it performs one COT retrieval for each pixel and each available

viewing angle and then combines the COT retrievals on 20×20 km2 “super-pixels” (Buriez et al., 1997), in our scheme the COT25

is retrieved by combining radiance and degree of linear polarization (DoLP) measurements at multiple viewing angles, and the

retrieval is provided at the native POLDER-3 pixel size of 6×7 km2. Also effective radius is retrieved at the native POLDER-3

pixel size, in an attempt to avoid relying on the strong assumptions about the spatial homogeneity of cloud properties that are

necessary in algorithms using the super-pixel approach (the super-pixels defined in the existing effective radius product for

POLDER-3 have a size of 150× 150 km2).30

The paper is structured as follows. In Sect. 2 a brief description of the POLDER-3 instrument is given. In Sect. 3 the design

of the neural network and its verification on synthetic data are discussed. Section 4 discusses the application of the neural

network retrieval to a year of POLDER-3 data, and the comparison of the retrieval results to MODIS Level 2 and Level 3 data

and to existing POLDER-3 retrievals. Finally, in Section 5 conclusions are drawn.
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2 The POLDER-3 instrument

The POLDER-3 instrument has been a multi-angle, multi-wavelength polarimeter flying on board the Polarization & Anisotropy

of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite (Lier and Bach, 2008).

It was launched in 2004 and has been part of the satellite constellation A-Train (L’Ecuyer and Jiang, 2010) until 2009. Initially

designed to be operated for 2 years, POLDER-3 has performed its measurements until late 2013, when it was decommissioned.5

POLDER-3 performed multi-angle radiance measurements in nine VIS-NIR wavelength bands (443 to 1020 nm) and polariza-

tion measurements in three of these bands (490, 670 and 865 nm), observing the Earth at up to 16 viewing angles. Its spatial

resolution at nadir was of about 6 km, and its swath width was of 2400 km.

POLDER-3 data have been used for a wide range of applications, including aerosol retrievals (Dubovik et al., 2011;

Hasekamp et al., 2011; Waquet et al., 2013), retrieval of cloud properties (Riedi et al., 2010; Parol et al., 2013; van Dieden-10

hoven et al., 2014b; Desmons et al., 2017), water vapour retrievals (Riedi et al., 2013), estimation of surface properties (Bréon

and Maignan, 2017) and validation of surface reflection models (Kokhanovsky and Bréon, 2012).

The successor of POLDER-3 will be the 3MI instrument (Fougnie et al., 2018), which is expected to be launched on board

the EUMETSAT MetOp Second Generation-A (MetOP SG-A) satellite in 2021. 3MI will be based on a similar measurement

principle to that of POLDER-3, but will carry out its measurements in twelve spectral bands, nine of which will have polarimet-15

ric capability. Furthermore, 3MI will extend its measurement spectral range to the SWIR region, in which it will also perform

polarization measurements, which are expected to allow for more accurate cloud retrievals.

3 Neural network design

3.1 Training set generation

Our neural network approach to the retrieval of cloud properties from POLDER-3 data decomposes the retrieval task into four20

subtasks, with a different neural network dedicated to each. A first level of separation has been made between retrievals over

land and over ocean. Second, separate neural networks have been trained for the estimation of the COT and for the estimation

of cloud microphysical properties (effective radius and effective variance). Having separate NNs specialized on cloud retrievals

above ocean and land is expected to simplify the training of each NN. The separation between COT and microphysical prop-

erties retrievals has been made because, given the physical nature of the retrieval problem, a different measurement vector25

appears more suitable for each of these two retrievals. Specifically, COT retrievals rely on multi-angle and multi-wavelength

radiance and degree of linear polarization (DoLP) measurements, whereas effective radius and effective variance retrievals

only rely on multi-angle and multi-wavelength polarized radiance measurements. Furthermore, effective radius and effective

variance retrievals are only performed if the scattering angle range at which measurements are performed includes the rainbow

range of 135◦ to 165◦, whereas this restriction does not apply to COT retrievals. An additional differentiation between the30

neural network for COT retrieval over ocean and that for COT retrieval over land concerns the measurement vector used in the

retrieval. The ocean neural network uses reflectances at 490, 675, 860 and 1020 nm, and DoLPs at 490, 675 and 860 nm as
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inputs, whereas the land network does not make use of the wavelengths 860 nm and 1020 nm in order to avoid dealing with

the large variability in the reflective properties of land surfaces at these wavelenghts. The reflectance at 565 nm is used as an

additional input in the NN for COT retrieval over land.

The NNs presented in this study have been trained using synthetic data. While the prior distributions of the cloud properties

used to generate the training sets are the same for all the NNs, a difference lies in the treatment of the surface properties5

between the ocean networks and the land networks. In the radiative transfer simulations produced in order to train the ocean

network, the surface properties are parameterized with respect to wind speed as in Cox and Munk (1954), to chlorophyll

concentration as in Morel and Maritorena (2001) and Chowdhary et al. (2006), and with respect to whitecaps fraction and

foam albedo as in Koepke (1984). For the land network, instead, the surface Bidirectional Reflectance Distribution Function

(BRDF) has been parameterized using the Ross-Li model (Maignan et al., 2004, and references therein), and the Bidirectional10

Polarization Distribution Function (BPDF) has been parameterized as in Maignan et al. (2009). For both land and ocean

simulations, the radiative transfer model described in Hasekamp and Landgraf (2002, 2005) has been used. Clouds have been

parameterized as spherical particles with a Gamma size distribution, with refractive index taken from the Optical Properties

of Aerosols and Clouds (OPAC) database (Hess et al., 1998). In order to reduce the computational complexity of the radiative

transfer simulations, the forward scattering peak in the phase function of cloud droplets has been accounted for by means of15

the delta-M approximation (Wiscombe, 1977) with the “MS correction” proposed by Nakajima and Tanaka (1988).

An important aspect to be pointed out, which may represent a limitation in our approach, is that the often highly peaked

phase functions of cloud droplets make it important to use an adequate number of streams in the forward model calculations.

As an example, in Fig. 1 a plot is shown of the simulated top-of-atmosphere (TOA) reflectance at 443.9 nm versus COT for 8,

16, 32 and 64 streams, assuming spherical cloud particles and a Gamma size distribution with an effective radius of 25 µm and20

an effective variance of 0.03. The simulations were performed for a solar zenith angle of 30◦ and assuming nadir observation.

It can be seen that, for COT larger than approximately 20, the simulated TOA reflectances critically depend on the chosen

number of streams. A higher number of streams generally results in more accurate radiative transfer simulations, but also

leads to an increased computation time. Since the generation of our neural network training dataset involves a large number of

radiative transfer simulations (in the order of 105 to 106), we were forced to limit the number of streams to 16 even if this does25

not appear to be the most accurate choice, as choosing a higher number of streams would have led to overly time-consuming

simulations.

An additional limitation – not specific to our approach but inherent to the physics of POLDER-3 measurements – is that

reflectance measurements in the optical range saturate for COTs larger than ∼ 40. This means that not enough information is

available to distinguish COTs around this values from larger COTs. For this reason, we decided to use a maximum COT of 4030

in the generation of the training datasets for our four neural networks.

As pointed out in Sect. 1, a very important element in the design of a neural network algorithm dealing with multi-angle

large-swath measurements is how to deal with the variability in the set of viewing angles at which the measurements are

performed. Our approach is similar to that proposed by Han et al. (2006) in the context of aerosol retrievals from the Multiangle

Imaging Spectroradiometer (MISR), and basically consists of using the set of viewing angles as additional input quantities for35

5

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-345
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 2 November 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 1. Dependence of simulated TOA reflectance at 443.9 nm on the number of streams used in the radiative transfer calculations.

the neural network. However, a difference between the two approaches lies in the way the neural networks are trained. While

Han et al. (2006) trained their neural network scheme using real MISR measurements co-located with MODIS Level 2 aerosol

properties, our neural networks are trained on synthetic data. In order to perform our simulations at viewing angle combinations

representative of actual POLDER-3 measurements, we sampled one year of POLDER-3 measurements, randomly selecting

25 orbits per month and 5000 combinations of viewing zenith angles, solar zenith angle and relative azimuth angles per5

orbit. We thereby generated a database of 1.5× 106 angle combinations which we used as inputs for our radiative transfer

calculations. Since the number of angles at which POLDER-3 performed its measurements is also variable, we decided to

only consider measurements performed at at least 14 angles to train our neural networks. This number was chosen in order to

have a good tradeoff between the benefit of having a good number of available viewing angles and that of not discarding too

many measurements, as would have been the case if we only considered measurements performed at 16 angles (the maximum10

available number for POLDER-3). Also for POLDER-3 measurements performed at more than 14 angles, only 14 angles are

used in the input vector for the neural networks. This choice was made in order to avoid dealing with the difficulty of having a

input vector of variable size or, as an alternative, of passing input vectors with missing data to the neural networks.

As discussed at the beginning of this section, the quantities used in the input vector differ between the COT retrieval neural

networks and the effective radius retrieval neural networks. The complete list of input quantities for each network is given in15

Table 1. Effective variance is retrieved as an additional parameter in the effective radius network, whereas cloud top height is

retrieved as an additional parameter in both networks. The ocean and land surface parameters are not included in the output

vector, but are randomized in the training set. From a theoretical standpoint, this corresponds to designing a neural network

that approximates the conditional expectation of the set of cloud properties x given the measurement vector y, marginalized

6
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Table 1. List of input quantities used in the COT neural network and in the effective radius neural network. The check mark symbol (X)

indicates that a given quantity (or set of quantities) is used in a neural network.

Input quantity COT NN (ocean) COT NN (land) reff NN

Reflectance (490 nm) – 14 angles X X
Reflectance (565 nm) – 14 angles X
Reflectance (675 nm) – 14 angles X X
Reflectance (865 nm) – 14 angles X
Reflectance (1020 nm) – 14 angles X
DoLP (490 nm) – 14 angles X X
DoLP (675 nm) – 14 angles X X
DoLP (860 nm) – 14 angles X
Pol. reflectance (490 nm) – 14 angles X
Pol. reflectance (675 nm) – 14 angles X
Pol. reflectance (865 nm) – 14 angles X
Surface pressure X X X
Solar zenith angle X X X
Viewing zenith angles (14 values) X X X
Scattering angles (14 values) X X X

over the possible values of the surface properties. Mathematically, if we denote by b a vector describing the surface properties,

the neural network will return an approximation of the following conditional expectation:

E[x|y] =
∫

D

E[x|y,b]fb(b)db (1)

where fb is the probability density function of b and D is the domain of fb. The same logic was followed in the treatment of

cloud microphysical parameters in the COT retrieval NN and of COT in the microphysical parameter retrieval NN, i.e., rather5

than making an assumption on the non retrieved parameters and keeping them constant in the training set, they are randomized.

This approach enables the training procedure to adjust the weights of the NN based on the input features that are of direct

relevance for the retrieval of the parameter at hand, preventing biases due to incorrect assumptions. A “classical” equivalent of

this approach would consist of averaging multiple retrievals carried out using different assumptions.

The details of statistical distributions of the cloud, ocean and land surface parameters used in the radiative transfer simula-10

tions are summarized in Table 2.

The measurement noise was modeled as an additive Gaussian random variable with zero-mean and standard deviation of 1%

for reflectance, 2% for polarized reflectance and 0.7% for DoLP. As done in previous work (Di Noia et al., 2015, 2017), such

noise was added to the synthetic measurements during the training phase, as a form of regularization as explained in Bishop

7

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-345
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 2 November 2018
c© Author(s) 2018. CC BY 4.0 License.



Table 2. Details of the statistical distributions of the cloud and surface parameters used to generate the training datasets.

Parameter Min Max Mean Std dev.

Cloud eff. radius (µm) 3 25 11.5 4.9

Cloud eff. variance 0.03 0.35 0.2 0.09

COT 0.5 40.0 20.25 11.41

Cloud top height (km) 2.0 20.0 7.0 2.88

Li-Sparse BRDF parameter 0.0 0.25 0.12 0.07

Ross-Thick BRDF parameter 0.0 1.5 0.75 0.43

Maignan BPDF parameter 0.02 10.0 4.83 2.86

Isotropic scatt. coeff. (490 nm) 0.0 0.89 0.04 0.04

Isotropic scatt. coeff. (670 nm) 0.0 0.87 0.16 0.11

Isotropic scatt. coeff. (865 nm) 0.0 0.80 0.28 0.11

Isotropic scatt. coeff. (1020 nm) 0.0 0.80 0.28 0.11

Wind speed (m/s) 0.01 7 3.83 1.43

Chlorophyll concentration 10−5 2.0 1.0 0.58

Whitecaps fraction 0.0 0.1 0.05 0.03

(1995). The neural network architecture was chosen based on results inherited from previous work, and for all the four network

consists of three hidden layers with 40 neurons each.

3.2 The ensemble approach

As anticipated in Sect. 1, training a neural network to invert multi-angular measurements from a large-swath instrument is a5

difficult task. In an attempt to reduce the retrieval uncertainty caused by imperfect training, we decided to train multiple neural

networks and use the average of their outputs as our final retrieval. This approach – called the “neural network ensemble”

approach (Hansen and Salamon, 1990) – is known to reduce the random component of the neural network output error, and

has been already applied with success in remote sensing contexts (Krasnopolsky, 2007). In principle, several methods exist to

combine the results of multiple neural networks in order to build an enhanced estimator, and an overview of such methods is10

given by Sharkey (1996). In this work, we have chosen to train multiple neural networks characterized by the same architecture

and on the same training set, varying the random initial value of the neural network weights. In practice, in this way, each

ensemble member (i.e., each individual net) is trained so that its weight vector approaches a different local minimum of the

error surface (Tresp, 2002). It is possible to prove that this method ensures that the variance of the error of the neural network

ensemble is smaller than the average variance of the single ensemble members (Perrone, 1993). Contrary to the error variance,15

the bias is not reduced by the ensemble approach.

The maximum reduction in variance is achieved when the errors of the ensemble members are uncorrelated, in which case

the reduction factor is equal to the number of ensemble members. This is not the case in our situation, as we observed a

8
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Table 3. Average bias, RMSE and correlation coefficient of the individual neural networks, and corresponding statistics for the NN ensemble,

over the sythetic test datasets.

Individual Ensemble

Surface Parameter Bias RMSE Corr. Bias RMSE Corr.

Ocean

COT −1.75 1.67 0.99 −1.75 1.41 0.99

Eff. radius (µm) 0.10 1.14 0.98 0.10 0.93 0.99

Eff. variance 0.0 0.04 0.93 0.0 0.03 0.95

Cloud height (m) −433 2307 0.63 −433 2284 0.64

Land

COT 0.39 1.95 0.99 0.39 1.65 0.99

Eff. radius (µm) 0.06 1.09 0.99 0.06 0.9 0.99

Eff. variance 0.0 0.04 0.92 0.0 0.03 0.95

Cloud height (m) −270 2280 0.62 −270 2248 0.64

significant correlation in the errors of the individual neural networks. For this reason, the gain obtained by using the ensemble

approach in our case is smaller than the maximum possible gain.

3.3 Results on synthetic data

The results of applying the neural network retrieval scheme on approximately 30000 synthetic test data not used during the5

training process are summarized in Table 3. The average bias, RMSE and correlation coefficient of the individual ensemble

members are shown together with the corresponding statistics for the neural network ensemble. In this test, we used ensembles

of five neural networks. As expected, the ensemble approach does not reduce the retrieval bias, but does reduce the root mean

square (rmse) error, although not in a dramatic way, as the errors of the individual networks are highly correlated. The results

of the synthetic retrievals over ocean and those over land are very similar. COT, effective radius and effective variance are10

generally well retrieved, whereas the quality of the cloud height retrievals is not as high.

While the results reported in Table 3 serve as an internal consistency check for the neural network performance, they cannot

be used to predict the performance of our neural networks when applied to real measurements. In fact, our simulation setup

entails a number of simplifications which are typically not satisfied in real scenarios. Some of the most important simplifications

are the following:15

– Training and test data have both been generated using a one-dimensional radiative transfer model. Therefore, a degrada-

tion of the retrieval accuracy can be expected when three-dimensional effects are significant.

– The impact of an incorrect assumption on the cloud particle size distribution cannot be assessed, as all the data are

generated with an assumed Gamma size distribution.

– The vertical distribution of cloud effective radius and effective variance is assumed constant. This is often not the case20

in reality (Martins et al., 2011; Zhang and Platnick, 2011; Zhang et al., 2012).

9
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Figure 2. Global distribution of snow cover and sea ice on 24 February 2006. Snow covered areas are shown in light pink, sea ice areas

are shown in dark pink. Data from the Aqua-MODIS Normalized Difference Snow Index (NDSI) and sea ice products. Image from NASA

Worldview (https://worldview.earthdata.nasa.gov).

All the aforementioned assumptions may lead to biases in the retrieved cloud properties (Zhang and Platnick, 2011; Zhang

et al., 2012; Miller et al., 2018). The assesment of the performance of our neural network scheme when applied to real mea-

surements will be the object of the next section.

4 Application to POLDER-3 data5

As pointed out in Section 3.3, testing the retrieval algorithm against synthetic data only gives an indication of its performance

under idealized conditions. In order to assess the performance of our neural network scheme, we used it to process the entire

POLDER-3 2006 Level 1B data set and compared the retrieved COTs and effective radii to Aqua-MODIS Collection 6 Level

2 and Level 3 retrievals, and to the available POLDER-3 Level 2 data. The results of this comparison are discussed in the

following subsections.10

4.1 Comparison to MODIS Level 2 data: Selected examples

In order to evaluate the performances of our neural network retrieval, we have compared our retrievals to the MODIS Level 2

product remapped on the POLDER-3 official sinusoidal grid (Zeng et al., 2011), made available from Centre National d’Études

Spatiales (CNES) and Lille University’s ICARE data archive (http://www.icare.univ-lille1.fr/archive/?dir=PARASOL/PM-L2/).

As an example, in this section we will present the results of a global comparison between our retrieval and the MODIS Level-215

product on 24 February 2006. This date is particularly interesting, because it contains a wide variety of situations, including
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Figure 3. A mosaic of Aqua-MODIS images showing Europe on 24 February 2006. Image from NASA Worldview (https://worldview.

earthdata.nasa.gov).

cases that may prove challenging for our retrieval of cloud properties. The results of daily global comparisons for the entire

year 2006 are provided in the supplementary information.

As shown in Fig. 2, snow-covered areas were present in several regions in the northern hemisphere, such as Central Asia,

NorthEastern Europe, Scandinavia and North America. Furthermore, a significant dust outbreak took place over the Eastern5

Mediterranean Sea, as shown in Fig. 3.

In Fig. 4, a global map of the COT retrieved by the neural network algorithm for POLDER-3 is shown, together with an

analogous maps produced by regridding the MODIS Level 2 product on the POLDER-3 resolution. The neural network product

covers a narrower swath with respect to the MODIS product, as only pixels observed at a minimum of 14 viewing angles are

considered in the NN retrieval.10

In general, the spatial patterns of COTs seem to be well captured by the NN retrieval, but a number other aspects can be

noticed in the maps. A first important remark is that at this stage we have not yet developed a cloud detection algorithm for our

neural network product. As a consequence, the neural network will process all the available ground pixels regardless of whether

they are actually covered by clouds. Nevertheless, it is interesting to see that over areas such as the Sahara desert – where a

large number of cloud-free pixels are present – the NN correctly reports COTs very close to zero. As explained in Sect. 3.1,15

the NN has been trained on a variety of synthetic scenes, including situations of small COTs on bright, desert-like, surfaces.

However, the NN has not been trained on snow-covered synthetic scenes, and in such situations our neural network scheme

seems to see large COTs. This is clearly visible in Fig. 4, where an extended area of large retrieved COT can be seen over

Central Asia. This area corresponds to the snow-covered region shown in Fig. 2. Similar features can be observed over North
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America. In general, distinguishing snow from clouds using POLDER-3 channels is extremely challenging if the observation

geometry does not sample the cloudbow region (Bréon and Colzy, 1999). However, incorporating snow-covered scenes in the

training set would be an interesting subject for future research in view of the application of our method to 3MI. In fact, 3MI

will provide measurements at 1.6 µm, where snow is highly absorbing and can therefore be distinguished from clouds (Warren,5

1982; Krijger et al., 2005, 2011) . An analogous behaviour of the NN COT retrievals can be observed over cloud-free regions

covered by sea ice, such as the Hudson bay, which appears covered by sea ice in Fig. 2 and exhibits large retrieved COTs in

Fig. 4.

Other areas in which the NN retrievals differ significantly from MODIS data need a more careful inspection. Figure 5 shows

retrieved COT maps over Europe for the NN algorithm and for MODIS. Both MODIS and the POLDER-3 NN generally see10

large COTs over the Balkans and in an area approximately centered around the Russian enclave of Kaliningrad. However,

additional areas of large COTs can be seen in the NN map and not in the MODIS map. One approximately covers northeastern

Italy and a smaller one is centered on northwestern Spain, down the Bay of Biscay. A plausible explanation for this behaviour

can be obtained by looking at the Cloud Phase Index (CPI) product, described in Riedi et al. (2010), which can be used to

estimate the cloud thermodynamical phase from combined POLDER-3 and MODIS data. Values of CPI lower than 50 indicate15

liquid water clouds and values larger than 150 indicate ice clouds, whereas intermediate values indicate mixed-phase clouds. A

map of the CPI over Europe for the selected date is shown in Fig. 6. The regions in which the NN retrieves much larger COTs

than MODIS generally coincide with regions marked as ice clouds in the CPI map (CPI systematically larger than 170). These

are not represented in the NN training set, and therefore the quality of the NN retrieval cannot be guaranteed over this type of

clouds.20

In order to explain the origin of the bias in the retrieved COT over ice clouds, we can reason as follows. The reflectance of a

cloud layer at nonabsorbing wavelengths can be approximated as (van Diedenhoven et al., 2014a)

R(µ0) =
τ(1− g)

2µ0 + τ(1− g) (2)

where µ0 is the cosine of the solar zenith angle, τ is the total optical thickness and g is the asymmetry parameter of the

scattering phase function. If we take Eq. (2) as the reflectance of an ice cloud layer of optical thickness τice, with asymmetry25

parameter gice, and assume the asymmetry parameter gliq of a liquid water cloud in our retrieval, a liquid water cloud of optical

thickness τliq with the same reflectance as that of the true ice cloud satisfies the relationship

τliq(1− gliq) = τice(1− gice) (3)

Therefore, we can expect the estimated liquid water cloud optical thickness to be related to the true ice cloud optical thickness

approximately as30

τliq =
(

1− gice
1− gliq

)
τice (4)

Given that in the MODIS C6 algorithm an ice cloud optical model with an asymmetry parameter of 0.75 is assumed (Holz

et al., 2016), and that liquid water cloud droplets typically have an asymmetry parameter around 0.85, based on Eq. (4) it is

expected that our retrievals over ice clouds are biased by a factor around 1.66 (van Diedenhoven et al., 2014b).
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Figure 4. Global cloud optical thickness maps on 24-02-2006 produced by the POLDER-3 neural network (top) and by MODIS (bottom).
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Figure 5. Cloud optical thickness maps over Europe on 24-02-2006 produced by the POLDER-3 neural network algorithm (top) and by

MODIS (bottom).
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Figure 6. POLDER-MODIS Cloud Phase Index over Europe on 24-02-2006.

Histograms of the ratio between the COT retrieved by the NN scheme and that retrieved by modis over liquid water clouds

(CPI < 50), ice clouds (CPI > 150) and mixed phase clouds (50 ≤ CPI ≤ 150), for the selected date, are shown in Fig. 7. It

can be seen that the peak of the histogram for ice clouds does not lie too far from the value predicted based on our simple

approximation. The histogram for liquid water clouds, instead, is much more peaked around a value of approximately 0.8.5

Since our NN algorithm for COT retrieval does not just rely on single reflectance values but also uses the angular variability

of reflectance and DoLP, it is expected that incorporating ice clouds in the training dataset may help to improve the COT

retrieval accuracy over this type of clouds, at least reducing the spread of the histogram in Fig. 7.

In order to carry out a global quantitative comparison between the COTs retrieved by the neural network and those retrieved

by MODIS over liquid water clouds, the following filtering criteria have been applied:10

– MODIS cloud fraction larger than 0.95;

– CPI smaller than 50;

– Ocean regions affected by sun glint were not considered.

A pixel was flagged as affected by glint if observed from at least one viewing direction satisfying the following conditions:

– relative azimuth angle between −90◦ and 90◦;15

– absolute difference between viewing zenith angle and solar zenith angle smaller than 10◦.
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Figure 7. Histogram of NN / MODIS COT ratios over liquid water clouds (CPI < 50), ice clouds (CPI > 150) and mixed phase clouds (50 ≤
CPI ≤ 150), on 24-02-2006.

Figure 8. Global plot of POLDER-3 neural network versus MODIS COT on 24 February 2006.

The results of the comparison are shown in Fig. 8, from which it can be seen that the POLDER-3 neural network algorithm

tends to retrieve systematically lower COTs with respect to MODIS, with a bias around −2. Overall, the two data sets look

fairly well correlated, with a correlation coefficient of 0.79.

A similar comparison between the NN retrieval and MODIS has been performed for cloud effective radius. Since the infor-5

mation on cloud effective radius in POLDER-3 measurements mostly resides in the polarized radiance in the rainbow scattering

angle range, only pixels containing observations within this range were used in the comparison. More precisely, a POLDER-3
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pixel was considered eligible for effective radius retrieval if it was observed in a scattering angle range satisfying the following

two conditions:

– Minimum scattering angle not larger than 135◦;

– Maximum scattering angle not smaller than 165◦.5

Such conditions are applied on top of the criteria mentioned above for the comparison of the retrieved COTs. The results

of the comparison are presented in Fig. 9, separately for ocean and land. Over both surface types, a negative bias in POLDER

retrieved effective radii with respect to MODIS effective radii using the 2.13 µm band is observed. The bias is around −2 µm

over ocean and −1 µm over land. The correlation coefficients are worse than for the COT, which is to be expected given the

differences in sensitvity to vertical and horizontal inhomogenities between the polarimetric and bi-spectral methods (Miller10

et al., 2016, 2018). Nevertheless, it appears that the NN retrievals are still capable of capturing some of the global patterns in

the spatial variability of the cloud effective radius.

Global histograms of the effective radii retrieved by the POLDER-3 NN over ocean and land are shown in Fig. 10. These

seem to reflect the general knowledge of the fact that cloud droplets over land tend to be smaller than over ocean (Han et al.,

1994; Bréon and Colzy, 2000; Bréon and Doutriaux-Boucher, 2005), thereby providing us with an additional sanity check for15

our retrievals.

4.2 Global comparison with MODIS Level 2 data

The comparison presented in Sect. 4.1, which refers to a particular day, highlights a number of features in the behaviour of our

NN retrieval algorithm. We carried out a more systematic comparison by looking at the entire Level 2 dataset for the year 2006.

In order to make the size of our datasets more manageable, we chose to rebin both the neural network retrievals and MODIS20

retrievals on a 1◦×1◦ grid. The data used in the regridding were filtered according to the same criteria explained earlier in this

section for the example date February 24th. The results of this global comparison for COT are shown in Fig. 11, separately

for ocean and land scenes. As for the effective radius, we observed a distinct behaviour in our retrievals between cases of “low

clouds” (cloud top pressures larger than 600 hPa) and cases of “high clouds” (cloud top pressures lower than 600 hPa). As

shown in Fig. 12, effective radius retrievals appear less biased with respect to MODIS both over ocean and land over “low25

clouds”. It is important to note that both the POLDER-3 and the MODIS retrievals used in the rebinning were preliminarily

filtered for ice using the POLDER-MODIS CPI, but it is still possible that cases exist in which the cloud phase identification

is imperfect. This result suggested us to filter out clouds higher than 600 hPa in our global effective radius comparison. This

filter has been used in all the comparisons that will be shown hereinafter.

Scatter plots of NN vs MODIS effective radii over ocean and land are shown in 14. The NN retrieved effective radii show30

a negative bias with respect to MODIS. Such bias appears fairly consistent between ocean and land. Looking at the scatter

plot, there seems to be a “cluster” of points over land for which the NN retrieves much larger effective radii than MODIS. A

preliminary investigation shows that these situations preferentially occur over Southeastern China, around the La Plata River

estuary in South America, and along the southern Bight of Biafra in Africa. This is shown in Fig. 13, which depicts a map of
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Figure 9. Global plots of POLDER-3 neural network versus MODIS cloud effective radius (in micrometers) on 24 February 2006 over ocean

(top) and land (bottom).

the data points over land where the MODIS retrieved effective radii smaller than 10 µm, whereas the neural network retrieved

effective radii larger than 18 µm. It is not clear, at this stage, if particular cloud types are associated to these areas, or if that

effect is caused by the presence of aerosols above clouds, which is at least possible over West-Central Africa (Waquet et al.,

2009). Another feature that can be noticed in the scatter plots in Fig. 14 (and in all the subsequent plots) is that the number of5

available data points over land is much smaller than over ocean. This is a result of filtering for high clouds, which reduced the

ratio between the number of land and ocean data points from ∼ 55% to roughly 39%.

The bias observed in the retrieved effective radii seems consistent with results obtained with other algorithms (Bréon and

Doutriaux-Boucher, 2005). The negative bias present in our COT retrievals is possibly explained by the presence of residual

cases of broken clouds in our dataset, which are known to cause negative POLDER – MODIS differences (Zeng et al., 2012).
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Figure 10. Global histograms of cloud effective radii retrieved by the POLDER-3 neural network over ocean and land on 24 February 2006.

Figure 11. Global comparison between neural network-based POLDER-3 cloud optical thickness retrieval with MODIS retrievals over ocean

(left) and land (right) encompassing the full year 2006, on a 1◦× 1◦ spatial grid.
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Figure 12. Histograms of MODIS–NN effective radius retrieval differences (in micrometers) over ocean (left) and land (right) differentiated

by cloud top pressure range.

Figure 13. Occurrence map of cases with MODIS effective radius smaller than 10 µm and NN effective radius larger than 18 µm, over land,

during the year 2006.
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Figure 14. Global comparison between neural network-based POLDER-3 effective radius retrieval and MODIS retrievals over ocean (left)

and land (right), encompassing the full year 2006, on a 1◦× 1◦ spatial grid. Effective radius values are in micrometers.

4.3 Comparison to existing POLDER-3 data and MODIS Level 3 data

In order to gain further insight on the behaviour of our retrieval algorithm, we carried out a global intercomparison between

our retrieved COTs and effective radii to existing POLDER-3 retrievals. COT data at a spatial resolution of 20× 20 km2 are

available from the POLDER-3 existing Level 2 product, whereas effective radius data are not included in the POLDER-3 Level5

2 product, but are available from the Cloud Dropled Radius (CDR) product. Both products are available from the ICARE data

archive mentioned in Section 4.1.

Also for the comparison between the neural network retrievals and the existing POLDER-3 products we have chosen a

regular 1◦× 1◦ grid. In order to better understand the difference between our retrievals and existing POLDER-3 products, we

compared retrievals from both products to the MODIS MYD08_D3 daily product (Platnick et al., 2015). This also allowed us10

to compare effective radius retrievals to MODIS retrievals using the 3.7 µm channel, which are not available in the combined

POLDER-MODIS Level 2 product. These retrievals are known to be more sensitive to the upper cloud layers compared to the

standard MODIS product using the 2.13 µm channel (Platnick, 2000), and are therefore expected to be more comparable to

polarimetric retrievals (Miller et al., 2016).

The results of comparing neural network COT retrievals to POLDER-3 Level 2 retrievals are shown in Fig. 15, separately for15

ocean and land. The correlation between the two retrieval schemes is high, although the NN retrievals are slightly lower than

the Level 2 retrievals, with a low bias around−1 over ocean and around−1.5 over land. A possible reason for these systematic

differences may lie in the different treatment of the cloud microphysical properties in the two algorithms. POLDER-3 Level 2

COT retrievals assume water droplets with a constant effective radius of 9 µm over land and 11 µm over ocean and a effective

variance of 0.15 (Zeng et al., 2012), whereas in our retrieval these parameters are not fixed but are varied randomly in the20

training set.
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Figure 15. Global comparison between POLDER-3 neural network-based and Level 2 cloud optical thickness retrievals over ocean (left) and

land (right) encompassing the full year 2006, on a 1◦× 1◦ spatial grid.

Figure 16. Global comparison between POLDER-3 neural network-based and CDR cloud effective radius retrievals over ocean (left) and

land (right) encompassing the full year 2006, on a 1◦× 1◦ spatial grid. Effective radius values are in micrometers.

A similar comparison is shown in Fig. 16 for cloud effective radius retrievals. In this case, the agreement between the neural

network and existing POLDER-3 data is better over ocean than over land. A moderate negative bias of the neural network

retrievals versus the CDR product exists over ocean, whereas over land the agreement is generally poor. We decided, then, to

compare both datasets to gridded MODIS retrievals using the 3.7 µm channel. The results are shown in Fig. 17 for ocean and5

Fig. 18 for land. As expected, the negative bias of neural network retrievals versus MODIS 3.7 µm effective radii is smaller

than that versus the 2.6 µm product. The existing CDR product seems more accurate and more precise than the neural network

product over ocean, whereas the opposite seems to occur over land, where the neural network retrievals exhibit a significantly

smaller bias versus MODIS compared to the CDR retrievals. Both over ocean and land, the bias of our neural network retrievals

appears – in absolute value – smaller than 2 µm.
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Figure 17. Global comparison between POLDER-3 and MODIS 3.7 µm cloud effective radius retrievals over ocean, encompassing the full

year 2006, on a 1◦× 1◦ spatial grid. Left: neural network. Right: CDR product. Effective radius values are in micrometers.

Figure 18. Global comparison between POLDER-3 and MODIS 3.7 µm cloud effective radius retrievals over land, encompassing the full

year 2006, on a 1◦× 1◦ spatial grid. Left: neural network. Right: CDR product. Effective radius values are in micrometers.

5 Conclusions

In this paper we have presented a neural network algorithm to retrieve the microphysical properties of liquid water cloud

from satellite multi-angle, multi-wavelength polarimetric measurements. The proposed approach is based on four ensembles of

neural networks trained for synthetic measurements. Two NN ensembles are dedicated to the retrieval of cloud optical thickness5

separately over ocean and land, whereas the other two are used in order to retrieve cloud effective radius and effective variance,

also separately over ocean and land. A distinctive feature of our algorithm is that it produces estimates of the cloud properties

at the native POLDER-3 L1B spatial resolution of 6× 7 km2.

We tested the proposed algorithm with measurements from the POLDER-3 instrument, which operated onboard the PARA-

SOL satellite between 2004 and 2013, but the approach can be readily adapted to any other imaging multi-angle polarimeter
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(e.g., 3MI) once instrument-specific factors – such as available spectral channels and number of available viewing angles – are

modified in the neural network design process.

The neural network algorithm has been applied to process the entire POLDER-3 dataset for the year 2006, and the retrieval

results have been compared to MODIS Collection 6 level 2 and 3 data and to existing POLDER-3 product. Comparisons5

between the NN retrievals and MODIS Level 2 data at the native POLDER-3 spatial resolution have been carried out on a

number of selected cases. They showed a negative bias around −2 in the NN COT retrievals and negative biases around −2

µm. More systematic, global comparisons against MODIS Level 2 and 3 cloud products, encompassing the entire dataset, have

been performed at a reduced spatial resolution of 1◦× 1◦. Such comparisons confirmed the high spatial resolution results with

respect to the biases in NN retrievals. While the negative biases in the retrieved effective radii are substantially consistent10

with those of existing POLDER products, the negative bias in retrieved COTs does not reflect the results already published in

literature.

One comparisons between the NN results and MODIS data also highlight a number characteristic features. One is that the

NN algorithm seems to correctly process cloud-free (or nearly cloud-free) scenes by returning low COT values in response to

such scenes. While this behaviour needs further investigation, it may be a suggestion that a properly trained NN scheme for15

COT retrieval may not need a preliminary cloud detection step. Another interesting feature is the fact that the NN retrievals –

which has been trained for liquid water clouds – seems to exhibit a specific pattern in presence of ice clouds. Specifically, the

presence of ice clouds leads to significant COT overestimations. While, on the one hand, the inability of our NN scheme of

handling ice cloud situations could be expected, given the way the training set was designed, on the other hand it appears that

properly incorporating such scenes in the training dataset would be an important algorithmic improvement for the retrieval of20

the cloud optical thickness. It must be emphasized, though, that including ice clouds in the training dataset is not expected to

improve effective radius retrievals. In fact, ice crystals are nonspherical and often much larger than visible wavelengths, and

therefore their scattering phase function does not present angular features from which particle size can be inferred. As a result,

over ice clouds only optical thickness and crystal shape information can be retrieved using multi-angle polarimetry, whereas

no information is available on particle size (van Diedenhoven et al., 2012).25

A three-way comparison between our NN, MODIS Level 3 data and existing POLDER-3 products suggests that our retrieval

scheme seems to have good capability in the retrieval of cloud effective radius over land. The agreement between the NN

retrievals and MODIS Level 3 products looks better than that exhibited by the existing POLDER-3 product. Over ocean,

instead, the performances are similar, with the existing product showing a slightly better correlation with MODIS.

An interesting future application of the proposed algorithm may be to measurements from new multi-angle polarimeters30

such as 3MI. The availability of polarization measurements in a higher number of spectral channels has the potential of further

improving effective radius retrievals for liquid water clouds, thanks to an improved sampling of the angular positions of the

secondary cloudbows.

Data availability. The data used in this study are available from the corresponding author upon request.
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